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Tasks
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Visual Grounding of phrases:

Localize any textual query into a given image.

Cross-modal retrieval:

Query:  A cat 
on a sofa



Semantic visual embedding

3Deep semantic-visual embedding with localization

A cat on 
a sofa A dog 

playing

A car

2D Semantic visual space example:
• Distance in the space has a semantic interpretation.
• Retrieval is done by finding nearest neighbors.



Approach
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• Learning image and text joint embedding space.

• Visual grounding relying on the spatial-textual information 
modeling.

• Cross-modal retrieval leveraging the semantic space and the 
visual and textual alignment.



Semantic Embedding Model
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Visual pipeline:

• ResNet-152 pretrained.

• Weldon spatial pooling.

• Affine projection 

• normalization.

Textual pipeline:

• Pretrained word embedding.

• Simple Recurrent Unit (SRU).

• Normalization.

ResNet conv pool
affine+
norm.

(a, man, in, ski, gear,
skiing, on, snow)

w2v SRU+norm

cosine
sim.

𝜃0: 2 and ϕ are the trained parameters
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Pooling mechanisms
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Weldon spatial pooling:

• Instead of global average/max pooling.

• Aggregate the min and max of each map.

• Produce activation map with finer localization. 

information.
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Simple Recurrent Unit: SRU
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Diagram by Jakub Kvita

Recurrent neural network:

• Fixed sized representation for variable length sequence.

• Able to capture long-term dependency between words.
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Dataset
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• MS-CoCo 2014:

• 110K training images

• 5 captions per image

• 2*5k images for validation and test

Dining room table set for a casual meal, with flowers.



Learning strategy: triplet loss
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A variant of the standard margin based loss:

• Triplet (𝐲, 𝐳, 𝐳′)

• Anchor: 𝐲 (E.g image representation)

• Positive: z (E.g associated caption representation)

• Negative: 𝐳′ (E.g contrastive caption representation)

• Margin parameter α

ሽloss(𝐲, 𝐳, 𝐳′) = ma x{ 0, α− < 𝐲, 𝐳 > + < 𝐲, 𝐳′ >



Learning strategy: triplet loss
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ሽloss 𝐲, 𝐳, 𝐳′ = ma x{ 0, α + d 𝐲, 𝐳 − d(𝐲, 𝐳′)

y

z

𝐳′

α



Learning strategy: triplet loss
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ℒ 𝚯;ℬ =
1

𝐵


𝑛∈𝐵

max
𝑚∈𝐶𝑛∩𝐵

loss 𝐱𝑛, 𝐯𝑛, 𝐯𝑚

+ max
𝑚∈𝐷𝑛∩𝐵

loss 𝐯𝑛, 𝐱𝑛, 𝐱𝑚

𝐖𝐢𝐭𝐡 :
• 𝐶𝑛 (resp. 𝐷𝑛) set of indices of caption (resp. image) unrelated to 

n-th element.

Hard negative margin based loss:

Loss for a batch ℬ = { 𝐈𝑛, 𝐒𝑛 ሽ𝑛∈𝐵 of image sentence pairs: 



Learning strategy: hard negative triplet loss
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vn

xn

ℒ 𝚯;ℬ =
1

𝐵


𝑛∈𝐵

max
𝑚∈𝐶𝑛∩𝐵

loss 𝐱𝑛, 𝐯𝑛, 𝐯𝑚

+ max
𝑚∈𝐷𝑛∩𝐵

loss 𝐯𝑛, 𝐱𝑛, 𝐱𝑚

Mining hard negative contrastive example:



Learning strategy: hard negative triplet loss
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From training to testing
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A cat on 
a sofa A dog 

playing

A car

Training finished:
• Visual-semantic space constructed.
• Parameters of the model are fixed.
• Time for testing.



Qualitative evaluation: cross-modal retrieval
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A dog playing 
with a frisbee

A plane in a 
cloudy sky

1. A herd of sheep standing on top of snow covered field.

2. There are sheep standing in the grass near a fence.

3. some black and white sheep a fence dirt and grass

Query Closest elements



Quantitative evaluation: cross-modal retrieval
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R@1 R@5 R@10 R@1 R@5 R@10

Caption retrieval Image retrieval

2-Way Net [5] 55.80% 75.20% 39.70% 63.30%

VSE++ [6] 64.60% 95.70% 52% 92%

Ours 69.80% 91.90% 96.60% 55.90% 86.90% 94%
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Cross-modal retrieval results

Cross-modal retrieval: Evaluated on MS-CoCo image/caption
pairs.



Performance evaluation: ablation study
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Performance boost coming from:

• Architecture choice: SRU and Weldon spatial pooling.

• Efficient learning strategy: hard negative loss.

R@1 R@5 R@10 R@1 R@5 R@10

Caption retrieval Image retrieval

Hard Neg + WLD + SRU 4 69.80% 91.90% 96.60% 55.90% 86.90% 94%

Hard Neg + GAP + SRU 4 64.50% 90.20% 95.50% 51.20% 84.00% 92.00%

Hard Neg + WLD + GRU 1 63.80% 90.20% 96% 52.20% 84.90% 92.60%

Classic + WLD + SRU 4 49.50% 81% 90.10% 39.60% 77.30% 89.10%
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Ablation study: cross modal retrieval results



Evaluation: cross-modal retrieval and limitations
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The plane is parked 
at the gate at the 
airport terminal.

Multiple wooden 
spoons are shown 
on a table top.

1. A harbor filled with boats floating on water

2. A small marina with boats docked there

3. a group of boats sitting together with no one around

1. Two elephants in the eld moving along during the day.

2. Two elephants are standing by the trees in the wild.

3. An elephant and a rhino are grazing in an open wooded area.

Query Closest elements



Localization
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Visual grounding module:

• Weakly supervised, with no additional training.

• Localize a textual query in an image.

• Using the embedding space to select convolutionnal activation maps.

two glasses

Source image

Text query

Visual grounding
Heat map



Semantic Embedding Model
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Localization
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Generation of heatmap 𝐇: 

ሿ𝐆′ 𝑖, 𝑗, : = 𝐴𝐆 𝑖, 𝑗, : , ∀ 𝑖, 𝑗 ∈ [1,𝑤ሿ × [1, ℎ

𝐇 = 

𝑢∈𝐾 𝐯

ሿ𝐯 𝑢 ∗ 𝐆′[: , : , 𝑢𝐾 𝐯 the set 
of the indices 
of its k largest 
entries



Qualitative evaluation: localization
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Visual grounding examples:

• Generating multiple heat maps with different textual queries.



Quantitative evaluation: localization
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"Center" baseline 19.50%

Linguistic structure [7] 24.40%

Ours 33.80%
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Pointing game results

The pointing game: Localizing phrases corresponding to subregions
of the image. 



Toward zero-shot localization: 
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• Emergence of colors understanding:

• Even on artificial images:



Toward zero-shot localization: 

29Deep semantic-visual embedding with localization

• Generalization to unseen elements:



Conclusion

Summary:

• Semantic-visual embedding model. 

• Effective on the cross-modal retrieval task

• Visual grounding of text with no extra supervision.

30Deep semantic-visual embedding with localization

A cat 
on a 
sofa

A dog 
playing

A 
carCNNimage

adaptation
+ pooling

RNN encodingtext

projection

tokenisation
+ embedding

Localization and retrieval using
the embedding space

Thank you!
Paper - Finding beans in burgers: Deep semantic-visual embedding with localization

http://openaccess.thecvf.com/content_cvpr_2018/CameraReady/3272.pdf

