

SoDeep: A Sorting Deep Net to Learn Ranking Loss Surrogates

June, 2019

Martin Engilberge, Louis Chevallier, Patrick Pérez, Matthieu Cord

SoDeep: A Sorting Deep Net to Learn Ranking Loss Surrogates

June, 2019

Martin Engilberge, Louis Chevallier, Patrick Pérez, Matthieu Cord

Problem

• Metrics often define machine learning tasks

• Goal: Use metric directly as loss function

- Focus on ranking metrics:
 - mean Average Precision (mAP)
 - Spearman correlation
 - Recall@threshold
- Computation of rank is non-differentiable

Approach

- Pretrained network computes rank from scores
- Ranking metrics expressed as a function of the rank

Training a differentiable sorter

Sorter architecture:

• LSTM based

Convolution based

Using only synthetic data:

- Uniform distribution over [-1,1]
- Normal distribution with $\mu = 0$ and $\sigma = 1$
- Evenly spaced numbers in random sub-range of [-1,1]

SCIENCES

5

Spearman correlation loss

Spearman correlation as a loss function:

• Spearman correlation:

$$r_s = 1 - \frac{6 \|\mathbf{rk}(\mathbf{y}) - \mathbf{rk}(\mathbf{y}')\|_2^2}{d(d^2 - 1)}$$

Spearman correlation loss

Spearman correlation as a loss function:

• Spearman correlation:

$$r_s = 1 - \frac{6 \|\mathbf{rk}(\mathbf{y}) - \mathbf{rk}(\mathbf{y}')\|_2^2}{d(d^2 - 1)}$$

• Maximizing spearman correlation:

$$\min_{\boldsymbol{\Theta}_A} \sum_{n=1}^N \left\| \mathbf{rk}(\mathbf{y}^{(n)}) - \mathbf{rk}(\mathbf{y}^{*(n)}) \right\|_2^2$$

Spearman correlation loss

Spearman correlation as a loss function:

• Spearman correlation:

$$\mathbf{r}_s = 1 - \frac{6 \|\mathbf{rk}(\mathbf{y}) - \mathbf{rk}(\mathbf{y}')\|_2^2}{d(d^2 - 1)}$$

• Maximizing spearman correlation:

$$\min_{\boldsymbol{\Theta}_A} \sum_{n=1}^{N} \left\| \mathbf{rk}(\mathbf{y}^{(n)}) - \mathbf{rk}(\mathbf{y}^{*(n)}) \right\|_2^2$$

• Replacing **rk** with the trained sorter:

$$\mathcal{L}_{SPR}(\boldsymbol{\Theta}_A, \mathcal{B}) = \sum_{n=1}^{N} \left\| f_{\boldsymbol{\Theta}_B}(\mathbf{y}(\boldsymbol{\Theta}_A)^{(n)}) - \mathbf{rk}(\mathbf{y}^{*(n)}) \right\|_2^2$$

Experiments

Object recognition: Evaluated on the Pascal VOC 2007 challenge

Model	mAP			
VGG 16	89.3%			
SoDeep	94.0%			

Memorability prediction:

Model	Spear. corr.
Baseline	46.0%
MSE loss	48.6%
SoDeep	49.4%

Cross modal retrieval: Evaluated on MS-CoCo image/caption pairs

Query: A cat on a sofa

Caption retrieval				Image retrieval				
Model	R@1	R@5	R@10	Med. r	R@1	R@5	R@10	Med. r
DSVE-Loc	69.8	91.9	96.6	1	55.9	86.9	94.0	1
GXN	68.5	-	97.9	1	56.6	-	94.5	1
SoDeep	71.5	92.8	97.1	1	56.2	87.0	94.3	1

Sorting Deep net to learn ranking loss surrogates

- Learning an approximation of the rank function
- Competitive results on real tasks
- Possiblity to extend to other non-differentiable functions

- Thank you for your attention !
- SoDeep: A Sorting Deep Net to Learn Ranking Loss Surrogates

SCIENCES

