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Problem
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• Metrics often define machine learning tasks

• Goal: Use metric directly as loss function

• Focus on ranking metrics:

• mean Average Precision (mAP)
• Spearman correlation
• Recall@threshold

• Computation of rank is non-differentiable



Approach
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• Pretrained network computes rank from scores

• Ranking metrics expressed as a function of the rank
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Training a differentiable sorter
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Using only synthetic data:

• Uniform distribution over [-1,1]

• Normal distribution with μ = 0 and  σ = 1

• Evenly spaced numbers in random sub-range of [-1,1]

BI-LSTM affine
conv.
block

affine…

Sorter architecture:

• LSTM based • Convolution based
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Spearman correlation loss
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Spearman correlation as a loss function:
• Spearman correlation:



Spearman correlation loss
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Spearman correlation as a loss function:
• Spearman correlation:

• Maximizing spearman correlation:



Spearman correlation loss
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Spearman correlation as a loss function:
• Spearman correlation:

• Maximizing spearman correlation:

• Replacing rkwith the trained sorter:



Experiments
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Object recognition: Evaluated on 
the Pascal VOC 2007 challenge

Model mAP

VGG 16 89.3%

SoDeep 94.0%

Memorability prediction:

Model Spear. corr.

Baseline 46.0%

MSE loss 48.6%

SoDeep 49.4%



Experiments
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Cross modal retrieval: Evaluated on MS-CoCo image/caption pairs

Caption retrieval Image retrieval

Model R@1 R@5 R@10 Med. r R@1 R@5 R@10 Med. r

DSVE-Loc 69.8 91.9 96.6 1 55.9 86.9 94.0 1

GXN 68.5 - 97.9 1 56.6 - 94.5 1

SoDeep 71.5 92.8 97.1 1 56.2 87.0 94.3 1

Query:  A cat on a 
sofa



Conclusion and Perspectives
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• Learning an approximation of the rank function

• Competitive results on real tasks

• Possiblity to extend to other non-differentiable functions

Thank you for your attention !
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